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1 Introduction

1.1 Motivation

The use of cryptography, an evolutionary technique involves the aim to allow two people to

exchange private/sensitive information on a public channel - one that may even be infested with

malicious users. The use of cryptography to protect secrets dates back to the Caesar cipher

amongst the Romans to the Enigma machine in World War II designed to protect confidential

military intelligence. In the current world, cyber threats come from all types of places, and

with open vulnerabilities, the data integrity from small businesses to large enterprises could

be at stake. To put it in context, between February and March of 2014, eBay underwent a

data breach of 145 million users which included encrypted passwords, names, e-mail addresses,

addresses, date’s of birth, etc [1]. Modern cryptography, built to counter such events, heavily

relies on number theory and algebra to effectively secure communications and transactions all

over the web today.

The subject of this paper aims to investigate: ”How are Mathematical concepts is used in

cryptographic solutions to achieve information security?”. This is done by first looking elemen-

tary to intermediate number theory used to build cryptographic ciphers and the connection to

the RSA encryption and decryption algorithm.

1.2 Public/Private Key Ciphers

In the field of cryptology, a cryptographic cipher (also known as encryption algorithms)

is a system to encrypt/decrypt data. Data including bank transactions, military inteligence,

sensitive intellectual data are sent from point to point with a low possibility of being meddled

with through the use of different ciphers. Two popular techniques are known as public-key

and private-key ciphers, with each having a encryption key and decryption key. An

encryption key is used to convert plain_text to cipher_text, leading the decryption key to

decode cipher_text back into plain_text.

A private-key cipher (also known as symmetric key encryption) utilizes a single key for

encrypting and decrypting data. Essentially the process starts with an unencrypted plaintext

message which is then ciphered with an encryption key. The receiving end must use the same
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key to transform the ciphertext back into the original message.

Figure 1: Private-key Encryption

In such case, the confidentiality of keeping the shared key a secret is essential to the cipher’s

security. The symmetric key encryiption system offers a fast and convenient way to set up,

however leveraging on scalability as the secret key has the potential to be lost or stolen to

adversaries aiming to decrypt messages.

On the other hand, a public-key cipher (also known as asymmetric key encryption) is

developed on the basis of two keys: public and private key. The public key, with open access,

encrypts the plaintext message before transmission. However, the ciphertext can be only de-

crypted with the private key. The niche about this system is that the public and private key

are mathematically related, but one cannot be derived from the other. For example the RSA

cryptosystem/algorithm utilizes the idea that multiplying two moderately large prime numbers,

for example p and q is simple but recovering the factors given n = p× q is a more non-trivial.

Figure 2: Public-key Encryption

The process and benefits of design of public-key cryptography can be seen with the following
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example, referencing Figure 2. Let the process start with two people, Alice and Bob, where

Alice is sending a message to Bob.

1. First, the receiver, Bob sends Alice his public-key, publicly, as in it’s confidentiality is

insignificant.

2. Alice, once receiving Bob’s public-key, encrypts her message, plain_text, into cipher-text

and sends it to Bob. To decrypt the message, a hacker would need Bob’s private key, which

is designed to only be in Bob’s possession.

3. Thus, after receiving the cipher-text, Bob uses his private_key to decrypt the message.

The public-key encryption system offers a more secure and thorough transfer of data, when

compared to symmetric encryption. In such case, Bob can save his private key to decrypt mes-

sages, even from multiple users. However, public-key encryption algorithms are computationally

costly, which will be discussed later as to exactly why. A third convention used in cryptography

is to use public-key encryption to share a private-key between two users securely, and then use

the public-key encryption technique.

2 Number Theory Essentials

In this section, the pre-requisites and essential topics from number theory that have connection

to cryptographic ciphers will be explored. The following section focuses on the RSA cryptosys-

tem, of which the creators had to rely on theoretical topics to create public-key exchange system

so that private_key could not be mathematically derived from the public_key effortlessly.

2.1 Prime Numbers and Divisibility

Definition 2.1.1. If a and b are integers, and a ̸= 0, and there is an integer k such that b = ak,

we say a divides b, or write a | b. Conversely, if a is not a divisor of b, we write a ∤ b [2].

Definition 2.1.2. The greatest common divisor of two non-zero integers a and b, gcd(a, b),

is the largest integer d (d ∈ Z+) such that d | a and d | b.

Proposition 2.1.1. For two integers a, b ∈ Z, where a ̸= 0, there exists a unique pair of integers

q and r satisfying b = aq + r and 0 ≤ r < a.
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Also known as the quotient-remainder theorem, q is called the quotient and r the remainder.

Definition 2.1.3. If two positive integers m and n have no common divisors greater than

1, they are said to be relatively prime or co-prime. Or, it can be said that (the greatest

common disivor equals 1) gcd(m,n) = 1.

Euclidean Algorithm:

One method used to find the gcd of two non-negative integers is prime factorization, while

another exploits repeated division known as the Euclidean Algorithm.

Let us suppose we have two positive integers a and b, where a ̸= b, a > b. The algorithm works

by initially dividing a by b, and by Proposition 2.1.1:

a = b · q0 + r0 (2.1.1)

where (q0, r0) are a pair of unique integers, with q0 ∈ Z and 0 ≤ r < b [3]. By repeated divisions

the algorithm continues [3]:

a = q0 · b+ r0, where 0 ≤ r0 < b,

b = q1 · r0 + r1, where 0 ≤ r1 < r0,

r0 = q2 · r1 + r2, where 0 ≤ r2 < r1,

r1 = q3 · r2 + r3, where 0 ≤ r3 < r2,

...

rk−2 = qk · rk−1 + rk, where 0 ≤ rk < rk−1,

rk−1 = qk+1 · rk + 0, and rk+1 = 0

Once rk+1 = 0, by the Euclidean algorithm:

gcd(a, b) = rk (2.1.2)

Example: Find gcd(1071, 462). Applying the Euclidean algorithm:
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1071 = 2 · 462 + 147

462 = 3 · 147 + 27

147 = 7 · 21 + 0

The last remainder is 0, thus gcd(1071, 462) = 21.

Definition 2.1.4. An integer p, where p > 1 is prime if it’s only divisors are 1 and p itself.

Conversely, it is said to be composite.

Definition 2.1.5. If a and b are non-zero integers and gcd(a, b) = 1, then a and b are said to

be coprime or relatively prime.

Theorem 2.1.1. The The Fundamental Theorem of Arithmetic states that every integer

greater than 1 can be written as a unique product of primes: pn1
1 pn2

2 pn3
3 . . . pnk

k , where pi are

prime numbers and ni > 0.

2.2 Modular Arithmetic

Modular arithmetic is a mathematical system dealing with integers 0, 1, 2, . . . ,m−1, also known

as integers modulo m, where m is referred to as the modulus [4].

Definition 2.2.1. Let m, where m ∈ Z+ be the modulus. Two integers a and b are congruent

if m | (a− b) or equivalently both share the same remainder when divided by m. We write this

relation as a ≡ b (mod m) when they are congruent, and a ̸≡ b (mod m) otherwise.

Example: 17 is congruent to 7 modulo 10 since 10 | (17 − 7) → 10 | 10, so 17 ≡ 7 (mod 10).

On the contrary, 17 is not congruent to 8 modulo 10 since 10 ∤ (17− 8).

By Proposition 2.1.1, there are a number of commmon modular arithmetic properties. If a, b ∈

Z, m ∈ Z+, and a ≡ b (mod m), the following are true for any integer c ≥ 0 [5].

1. a+ c ≡ b+ c (mod m)

2. a− c ≡ b− c (mod m)

3. ac ≡ bc (mod m)

4. ac = bc (mod m)
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Definition 2.2.2. Given an integer b and modulo m, the modular inverse of b is an integer

b−1 such that b · b−1 ≡ 1 (mod m).

Proposition 2.2.1. The modular multiplicative inverse or ”modular inverse” of an integer

b modulo m, b−1, does not exist when gcd(b,m) > 1 [4].

Proof. If b−1 exists, it is the solution to the congruence: bx ≡ 1 (mod m), which can be re-

written as bx = km + 1 or bx − km = 1, k ∈ Z. If d = gcd(b,m), we have d | bx and d | km

which implies d | (bx − km). Since bx − km = 1 ⇒ d | 1 ⇒ d = 1. Thus for b−1 to exist,

gcd(b,m) must be 1, and cannot be greater than 1.

2.3 Fermat’s Little Theorem

Theorem 2.3.1. (Fermat’s Little Theorem (FLT) [6]) Let p be some prime number, and a

some integer (a ∈ Z). If a is not divisible by p, then ap−1 ≡ 1 (mod p) which is equivalent to:

ap = a (mod p) or p | ap − a (2.3.1)

Proof. (Proof By Induction [6]) Let P (a) be the proposition that ap ≡ a (mod p), where p is a

fixed prime number.

With the base case, P (1), we get:

1p ≡ 1 (mod p) (2.3.2)

which is true.

Next, assume/suppose the following congruence is true for some P (a = k), k ∈ Z+:

kp ≡ k (mod p) (2.3.3)

(Inductive Step) For P (a = k + 1), by the binomial theorem, our left side is:

(k + 1)p =

p∑
i=0

(
p

i

)
kp−i (2.3.4)

= kp +

(
p

1

)
kp−1 +

(
p

2

)
kp−2 + · · ·+

(
p

p− 1

)
k + 1 (2.3.5)

7



Taking (mod p) to 2.3.5, we see that p divides all
(
p
i

)
= p!

i!(p−i)! for 1 ≤ i ≤ p − 1, as p | p!.

With simplification to 2.3.5, we get:

(k + 1)p ≡ kp + 1 (mod p) (2.3.6)

From 2.3.3, we know that kp ≡ k (mod p) ⇒ kp + 1 ≡ k + 1 (mod p). Substituting into 2.3.6,

we get:

(k + 1)p ≡ k + 1 (mod p) (2.3.7)

Thus, the proposition holds for a = k + 1. If the proposition is true for a = k, k ∈ Z, and is

true for a = k + 1, it shows P (k) ⇒ P (k + 1). Since the proposition is true for a = 1, by the

principle of mathematical induction it is true for all a ∈ Z.

Using FLT to find Modular Inverse:

For the specific case of a prime modulus, Fermat’s Little Theorem can be used to the modular

inverse of an integer with respect to the modulus.

Let a be an integer, and m a prime modulus, where gcd(a,m) = 1 and a−1 is the modular

multiplicative inverse of a. From Theorem 2.3.1 we have:

am−1 ≡ 1 (mod m)

am−1 · a−1 ≡ a−1 (mod m)

am−2 × (a · a−1)︸ ︷︷ ︸
1 from Definition 2.2.2

≡ a−1 (mod m)

⇒ am−2 ≡ a−1 (mod m) (2.3.8)

To find am−2 from 2.3.8 computationally, one can utilize Binomial Exponentiation [7].

Binomial Exponentiation:

Problem Statement: Find an where a and n are positive integers, and n can tend to very large

numbers i.e ≈ 1018.

Thoughts: Computationally, multiplication is a highly intensive task. In some cases, it could

take up to years to calculate the powers of certain large expressions. Binomial exponentia-

tion suggests an idea to caluclate an in utmost ⌊log2 n⌋ + 1 operations [7]. To take this into
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perspective, if n = 1018, binomial exponentiation could solve it in 60 multiplication operations.

Idea:

Write n in terms of base 2. For example given a = 4 and n = 11.

411 = 410112 = 48 · 42 · 41

Specifically, we are finding the following expression: a1, a2, a4, a8, . . . , a2
⌊logn⌋

[7]. As for cal-

culating the powers in the stated list, each can be calculated by squaring the previous (i.e

a8 = (a4)2), resulting in fewer multiplications as well.

Thus, 411 can be found with 3 multiplications:

411 = 65536 · 16 · 4 = 4194304

2.4 Chinese Remainder Theorem

Theorem 2.4.1. (Chinese Remainder Theorem (CRT) [8]) If m1,m2, . . . ,mk are pairwise co-

prime positive integers, (gcd(mi,mj) = 1 for i ̸= j), and a1, a2, . . . , ak are arbitrary integers,

then the following system of congruences:

x ≡ a1 (mod m1)

x ≡ a2 (mod n2)

...

x ≡ ak (mod nk)

have a solution, unique modulo m1m2 . . .mk.

Example: Solve the following simultaneous congruences:

x ≡ 3 (mod 5)

x ≡ 1 (mod 7)
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Solving for x separately we get:

x ≡ 3 (mod 5) ⇒ x ∈ {3, 8 , 13, 18, 23, . . . }

x ≡ 1 (mod 7) ⇒ x ∈ {1, 8 , 15, 22, 29, . . . }

We see the first solution is 8, and by CRT, all solutions are in the form: x ≡ 8 (mod 35) or

8 + 35k.

Proposition 2.4.1. Let α and β be two co-prime positive integers. If x ≡ a (mod α) and

x ≡ a (mod β), then by CRT, x ≡ a (mod αβ).

Example: If 53 ≡ 5 (mod 6) and 53 ≡ 5 (mod 8), we know 53 ≡ 5 (mod 48).

3 The RSA Cipher

3.1 About the RSA

The RSA (Rivest-Shamir-Adleman) is a public-key cryptographic cipher/cryptosystem, and

named after the surnames of it’s authors, first published in 1977 [9]. The security and strength

of the system stems from the notion that factorizing large integers into their prime number

factorizations is unfeasible in a computational sense.

The revolutionary development of the RSA algorithm led to countless practical applications,

to which most can associate with. Any website labeled https uses a security protocol system

called SSL (Secure Sockets Layer) [10]. Intended to protect two-way data communication be-

tween web serves, the protocol relies on RSA Ciphers. A https website can also be identified

with the padlock icon, to the left of the site url [10]. It is also used for the primary goal of

Information Security, such as authenticity in emails, bank transactions, site logins, etc.

3.2 Euler’s Theorem

Definition 3.2.1. The Euler totient-function [12], or φ(n), n ∈ Z+, is defined to be the

number of positive integers less than or equal to n, that are coprime to n. Formally: φ(n) is

the number of m ∈ Z+, where 1 ≤ m ≤ n and gcd(m,n) = 1.
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Example: Find φ(9):

gcd(1, 9) = 1, gcd(2, 9) = 1, gcd(3, 9) = 3

gcd(4, 9) = 1, gcd(5, 9) = 1, gcd(6, 9) = 3

gcd(7, 9) = 1, gcd(8, 9) = 1, gcd(9, 9) = 9

By inspection, we can see that φ(9) = 6.

Proposition 3.2.1. If p is a positive integer (p ∈ Z), and prime, φ(p) = p− 1.

Proof. We know from Definition 2.1.3 that a prime number p has divisors 1 and p. By analyzing

gcd(k, p) for 1 ≤ k ≤ p, we can see that except for gcd(k = p, p) = p, gcd(k, p) = 1 for all other

k. Thus, φ(p) = p− 1.

Proposition 3.2.2. If n is a positive integer, where n’s prime-factorization is n = pe11 pe22 pe33 . . . pemm

[12]:

φ(n) = n

k∏
i=1

(
1− 1

pi

)
= n

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pm

)
(3.2.1)

Theorem 3.2.1. (Euler’s Theorem [13]) If positive integers a and n are coprime, and φ(n)

is the Euler’s Totient Function:

aφ(n) ≡ 1 (mod n) (3.2.2)

Example: Find 36 (mod 14).

We know gcd(3, 14) = 1, so 3 and 14 are therefore coprime. We also see that φ(14) = 6, which

is the exponent 3 is raised to. By Theorem 3.2.1, where a = 3, φ(n) = 6, n = 14, the answer

must be 1.

3.3 Encryption Process

For the sake of simplicity, we will refer back to the example in 2, where Bob is the receiver and

Alice is the sender. This section will focus on the direct step-by-step mathematical process that

RSA undergoes. The following will reinforce the steps with mathematical proofs.
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ASCII Character Encoding: The RSA cryptosystem requires messages to be transcribed

as numbers - numerical values. ASCII (American Standard Code for Information Interchange),

is a character encoding system where each unique alphanumeric character is represented with

an integer.

Figure 3: Basic ASCII Table [14]

For example consider the message ”box”:

”box” = 98 + 111 + 120 = 98111120

Algorithm (Key Generation) [11]:

1. Bob chooses two secret primes, p and q, relatively large, and computes his modulus

n = pq.

2. Next, Bob forms his public encryption key e, by picking an integer e such that

gcd(e, φ(n)) = 1. Note that since n = pq, where p, q are primes, φ(n) = (p− 1)(q − 1).

3. The secret decryption key, d, is computed such that ed ≡ 1 (mod φ(n)). Thus, d is

the modular multiplicative inverse of e, since gcd(e, φ(n)) = 1.
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4. Bob publishes his public key as a pair: (e, n), and keeps his secret key as (d, n). Note p

and q are also kept hidden.

Algorithm (Encryption and Decryption) [11]:

In our case, where Alice will send a message (plain_text) to Bob (m), it must be convert to

ASCII i.e consider the example of ”box” outlined in an earlier section.

For simplicity, the assumption is made that m fits the inequality 2 ≤ m < n, where n is the

modulus outlined above.

When Alice sends the message to Bob, she must have the message m, Bob’s public-key (e, n).

The cipher_text c is calculated as:

c ≡ me (mod n) (3.3.1)

Alice then sends c to Bob, who can then decrypt the cipher_text back to plain_text with

his secret key d and n:

m ≡ cd (mod n) (3.3.2)

It is interesting to point out that what RSA is suggesting is: med = m (mod m), where the

public/private keys e and d cannot be derived from one another.

Example:

1. Bob chooses his prime numbers as p = 23 and 37. n is calculated as n = pq = 851.

2. We know that φ(n) = (p−1)(q−1) = (23−1)(37−1) = 792. One value of e that satisfies

gcd(e, φ(n)) = 1 is e = 5.

3. Bob can calculuate his secret key d as the modular inverse of 5, with the modulus as

φn = 792. Thus, we have: d = e−1 where e · e−1 ≡ 1 (mod φ(n)). By calculating modular

inverse, we get d = 317.

4. Alice wants to send the message ”BED” to Bob. For simplicity, as m needs to be less

than n, we assume the mapping A → 1, B → 2, . . . Box then equals: B + E + D =

”2” + ”5” + ”4” = 254.
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5. Alice encrypts the message m to cipher text as follows: c ≡ me (mod n). Thus, we get:

c ≡ 2545 ≡ 760 (mod 851).

6. Bob can decrypt the cipher text back into plain text as follows: c ≡ cd (mod n). Thus,

we get: d ≡ 760317 ≡ 254 (mod 851).

7. Bob gets the text message as 254, from which he can determine the original message using

ASCII, resulting in ”BED”.

3.4 Proof of Correctness

From the encryption process, we see that φ(n) = (p − 1)(q − 1). Since n = pq (the prime

factorization), we can utilize Proposition 3.2.2 to see why this is true:

φ(n) = n

k∏
i=1

(
1− 1

pi

)
= pq

(
1− 1

p

)(
1− 1

q

)
= (p− 1)(q − 1)

The overall correctness of the RSA Algorithm stems from the theorem:

Theorem 3.4.1. For defined integers e, d and n, from Algorithm (Key Generation), med ≡

m (mod n) for m ∈ Z.

Proof. Consider two cases:

Case 1: When m is coprime to n [15]: We know that ed ≡ 1 (mod φ(n)), which can be

rewritten as:

ed ≡ 1 (mod φ(n)) ⇒ φ(n) | (ed− 1)

⇒ (ed− 1) = φ(n)k where k ∈ Z

⇒ ed = 1 + φ(n)k where k ∈ Z

Since m and n are coprime, this means that gcd(m,n) = 1, and by Euler’s Theorem (Theorem

3.2.1), mφ(n) ≡ 1 (mod n).
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Next, consider the following:

med ≡ m1+φ(n)k ≡ m1 · (mφ(n))k ≡ m · 1k ≡ m (mod n)

Thus, for case 1, med ≡ m (mod n) for m ∈ Z.

Case 2: When m is not coprime to n [11]:

From the described algorithm, we know that e and d satisfy ed ≡ 1 (mod φ(n)) which can be

written as:

ed = 1 + k(p− 1)(q − 1), where k > 0

Since n = pq, and p and q are co-prime, by the Chinese Remainder Theorem, specifically

Proposition 2.4.1, it suffices to show:

med ≡ m (mod p) and med ≡ m (mod q)

Taking the first congruence med ≡ m (mod p), consider two cases:

1. If m ≡ 0 (mod p), then med ≡ 0 (mod p), as med is simply a multiple of m.

2. If m ̸≡ 0 (mod p), we know mp−1 ≡ (mod p) by Theorem 2.3.1, and we get:

med ≡ m1+k(p−1)(q−1) = m · (mp−1)q−1 ≡ m · 1q−1 ≡ m (mod p)

From both cases, med ≡ m (mod p) holds. By symmetry, substituting q for p yields the same

result. Thus, for case 2, med ≡ m (mod n), for m ∈ Z.

The co-prime Case:

Analyzing Case 1, we see the assumption that n and m are co-prime. Many published papers on

RSA use the Chinese Remainder Theorem for the general case, regardless of coprime properties.

This is because the probability of m and n not being co-prime (gcd(m,n) ̸= 1) is quite low.

We know that m < n from the encryption process. For gcd(m,n) ̸= 1 for 2 ≤ m < n, means

that m must be a multiple of p, q or both. Considering the multiples of p and q within the

range of n we get:

15



p → p, 2p, 3p, . . . , qp

q → q, 2q, 3q, . . . , pq

Since p and q are prime we know that thedre are p+ q possibilities with the common pq, thus

p+ q − 1 unique possibilities. Thus, we get the probability as:

p

pq
+

q

pq
− 1

pq
=

1

p
+

1

q
− 1

pq

As p and q are choosen as relatively large prime numbers, it is highly improable that m and n

will not be co-prime. However, even if they are, the algorithm is still proved by case 2.

3.5 Security of RSA

RSA relies on p and q – the prime numbers choosen – where n = pq, to be incredibly large. This

is since in order to make n difficult to factor into p and q. The beauty within this is that there

is no concrete process offered by Mathematics to simply provide a list of prime numbers below

n. Despite having multiple primality tests published, RSA remains secure with the notion that

n is difficult to factor without an insane amount of computational power.

4 Conclusion

Information security is essentially the practice and method in which individuals securely keep

a ledger’s of everyones information. This can range from simple greetings passed over thorugh

email in Gmail, to million-dollar transacations occuring daily on the Bitcoin cryptocurrency

channel. To this end, with the invaluable time and effort of numerous computer scientists

and mathematicians, we have developed methods of encryption and decryption through the

innovative and creative use of Mathematics. The RSA (Rivest-Shamir-Adleman) method is a

clever interlay of the topics within principal number theory and algebr, manipulated to create

an ”one-way” easy mathematical process. Notably, this included topics such as prime numbers,

divisibility, modular arithmetic, Fermat’s littl theorem, and Chinese remainder theorem.

Speaking to the proclaimed security of RSA, according to [16], it is clear that computers of
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today’s age will struggle with the main factorization present in this algorithm. According

to [16]: ”classic computers [would take] around 300 trillion years to break a RSA-2048 bit

encryption key”. However, while this may feel ”safe”, it doesn’t talk to the full picture. In

recent times, quantum computers – exceedingly fast numerical machines – are on the rise.

Capable of processing operations at insane speeds, this poses what may be a big threat to the

cryptography world, but in response to this there are new cryptographic ciphers on the rise.

For example, take a look at symmetric ciphers. As discussed previously, these are not usually

favoured due to the fact that messengers have to establish a secret key over a public channels

which may be tampered with. However, new mathematics has worked to solve in an effective

way. With the use of the Discrete Logarithm Problem (DLP) on finite groups (beyond the

topics within this paper), there have been two new cryptographic ciphers invented known as:

Diffie-Hellman Key Exchange, and Elgamal Encryption. It is important to acknowledge both,

due to the nature of information security being a real-world problem present on online-browsers,

emails, and social media accounts. Both of these are typically used for applications that need to

be scalable and fast. Since a public-key cryptographic cipher is a prolongued process, modern

computer scientists favour the latter two algorithms for efficiency.
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