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Introduction

Materials crafted from natural and synthetic rubber are utilized in countless practical applications.

The elastic trait allows for use in commercial products such as tubes, tires, washers, etc. In addition

rubber’s chemical composition embodies strengthened longevity by reducing mechanical stress in

heavy industrial machinery namely electrical motors, engines, automobile parts, etc. When under

use in the real world, such equipment is prone to strong doses of heat i.e. the burning of fuel in

a car eventually dissipates as heat in where the elastic strength of rubber is critical for function.

This paper will investigate the relationship between temperature and elasticity (specifically spring

constant) through the research question:

Research Question

How does temperature T (◦C) affect the spring constant k (Nm−1) of a rubber band?

Theoretical Background

The elastic property of a rubber/elastic band can be defined as the object’s adaptability to renew to

its original shape following distortion.

To start, the behaviour of elastic solids can be explained mathematically by applying Hooke’s Law:

Fa = k∆x (1)

where Fa is the applied force in newtons (N), k is the spring constant in newtons per meter (Nm−1)

and ∆x is the stretch or compression in meters (m).

To correlate elasticity with spring constant, we refer to the definition of the elastic property of a

rubber/elastic band: the object’s adaptability to renew to its original shape following distortion.

Thus, a more elastic object will stretch a longer distance ∆x and produce a smaller spring constant

k as k ∝ 1
∆x from Equation 1.
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To calculate spring constant, assume two scenarios of the identical rubber band. One with natural

length L1, and another with a mass elongating it’s length to L2, as illustrated in the diagram below.

The change in length L2 − L1 is defined to be ∆L.

Figure 1: Mass Elongation

To calculate k, we allow for the applied force Fa to be equal to Fg where Fg = mg, (gravitational

force by the mass m).

mg = k∆L ⇒ k =
mg

∆L
, (where g is 9.81ms−1) (2)

To further explore and hypothesize the behaviour of elastic materials such as the rubber band, we

introduce the concept of Young’s Modulus, an extension of Hooke’s Law which normalizes the dimen-

sions of the sample.

Young’s Modulus is defined as:

Y =
σ

ϵ

where σ is defined as the tensile stress of the sample; F
A (force per unit area), and ϵ is the tensile

strain; ∆L
L (relative change in length where L is original length), and Y representing the modulus of

elasticity.

Substituting:

Y =
F/A

∆L/L
=

FL

A∆L

F = force applied in N

A = cross sectional area in m2

∆L = change in length in m

L = original length in m

(3)
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Using Young’s Modulus, Hooke’s Law can be rewritten as:

Given σ = F
A and ϵ = ∆L

L , and σ = Y ϵ,

F
A = Y ∆L

L , and with rearranging:

F = Y A
L ∆L

This informs us that k = AY
L (4). The notion of Young’s Modulus can be investigated to provide a

rough trend of Y with temperature.

Rubber bands are created of multiple Polymer molecules arranged in chain-like fashion in the un-

derlying chemical structure. Most solid objects have a tendency to expand in length when prone to

increased amounts of temperature. The aforementioned structure of Polymer has shown to produce

a counter intuitive trend and shrink in the scenarios of high temperature. When heated, the entropy

of the object is increased, and the chains get more tangled together, reducing in length.

Figure 2: Polymer Chains (Jansen, 2007)

Furthermore as the rubber band shrinks, according to

R. L. Anthony, R. H Caston and Eugene Guth (1942),

it is shown that the Young Modulus follows an inverse

trend and rises in value. Suppose a scenario where the

rubber band is kept at constant strain ϵ and the stress

σ is measured with increasing temperature:

Y =
σthermal

ϵ
(5)

The force required to sustain the object has been shown to increase, thus increasing stress - σthermal.

This shows that the tensile stress of the elastic object should be correlated to the temperature of the

sample.

Let T be the temperature in ◦C. If a linear relationship between T and σthermal is to be assumed, the

following summarizing proportionalities are formed:

k ∝ Y ∝ σthermal ∝ T

⇒ k ∝ T (6)
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Hypothesis

From the summarizing proportionalities in Equation 6, we notice that an increase in temperature T

results in greater stress that the rubber band experiences, ultimately increasing Y . As k and Y are

directly proportional, k increases as well. With the mentioned observations, and consideration into

assuming σthermal to be linearly correlated with T , the hypothesis is formulated as:

The spring constant k (Nm−1) of the rubber band will increase linearly as a result of increasing

temperature T (◦C).

Variables

Independent Variable: The independent variable is the temperature T (◦C) of the rubber band

(◦C ± 0.1 : −5.0, 5.0, 15.0, 25.0, 35.0, 45.0, 55.0) which was measured using a lab thermometer. The

average room temperature is estimated as 25.0 ◦C, and there are 3 positive and negative increments

on either side. Each increment was repeated for a total of 5 trials.

Dependent Variable: The dependent variable is the spring constant k (Nm−1). As the force Fg

applied onto the rubber band is constant, k is calculated by measuring the change in length ∆L and

utilizing Equation 2. A ruler attached to the apparatus was used to measure length with uncertainty

(± 0.0005m). To elongate the rubber band, a hook weight of mass m = 0.085 kg was used.

Controlled Variables:

Mass of Weight: The same hook weight with mass m = 0.085 kg was used every iteration.

Rubber Band: Since each rubber band has its own unique structural composition, switching it

for different increments would produce random error. Hence, the same initial rubber band was used

throughout the experiment.

Environment: External factors such as wind blowing on the apparatus could affect the length

the rubber band elongates by, thus becoming an extraneous variable. Hence, the experiment was

conducted in a closed environment (limiting air passing in through windows).

Fixed Point: The rubber band must be secured to the apparatus, to avoid causing an external factor

affecting elongation. Thus the rubber band was attached to a photo hook which was nailed into the

retort stand.
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Apparatus

Figure 3: Full setup of retort stand and key materials

Additional materials not included in Figure 3 include a cooktop and a fridge, both intended for the

thermal interaction of the rubber band.

Method

1. Set up the apparatus as shown in Figure 3.

2. Attach the hook weight to the rear end of the photo hook.

3. Place the rubber band onto the photo hook, and record initial length.

4. If heating the rubber band, add water to the stainless steel cup and insert the rubber band.

Place onto a stove. If cooling, place the rubber band into a fridge, and assess temperature.

5. Maintain temperature using the lab thermometer and terminate when the desired value has

been reached.

6. Attach the rubber band onto the photo hooks, and measure the change in length from the

original value, with the ruler.

7. Repeat steps 4-6 for 5 trials of the current increment.
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8. Repeat steps 4-7 for 7 increments of temperature (−5.0, 5.0, 15.0, 25.0, 35.0, 45.0, 55.0 in ◦C).

Safety, Ethical, and Environmental Concerns

Precautions such as wearing safety goggles, and oven mitts, must be obeyed during the procedure.

When emptying hot water to repeat for another increment, caution is advised.

Data Collection, Processing, and Analysis

The determined value of ∆L (distance of elongation), for a particular iteration, is calculated by averag-

ing ∆Li∀i, where i is the trial number [1, 5]. The uncertainty of ∆L is calculated as max∆Li−min∆Li
2 (7),

and denoted as ∆Lunc.

Sample Calculations

This sample will suppose the results with (N = 5) trials as follows and the uncertainty calculated

using Equation 7. Assume initial length L = (0.0210 ± 0.0005)m. When elongated, the change in

length has it’s uncertainty propagated to result in ± 0.001m. All ∆Li are hence truncated to 3 decimal

places.

∆L1 = 0.023m, ∆L2 = 0.022m, ∆L3 = 0.024m, ∆L4 = 0.023m, ∆L5 = 0.023m

∆L =
1

N
·

N∑
i=1

∆Li = 0.023m

∆Lunc =
max∆Li −min∆Li

2
= 0.001m

To calculate the spring constant k, assume the mass of the hook weight to be m = 0.085 kg. k can be

calculated with Equation 2 and propagating uncertainties:

k =
mg

∆L
=

0.085 kg × 9.81ms−2

0.023m
≈ 36.3Nm−1

∆k

k
=

∆Lunc

∆L
⇒ ∆k =

k ×∆Lunc

∆L
=

36.3Nm−1 × 0.001m

0.023m
= ± 1.578Nm−1 ≈ ± 1.6Nm−1
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Raw Data

The initial length of the rubber band was measured with uncertainty (0.095 ± 0.0005)m. As the

stretched length is measured, the change in length is calculated as ∆L, with uncertainty 2 ·0.0005m =

± 0.001m.

Table 1: Raw quantitative data of the experiment

Processed Data

Table 2: Processed quantitative data of the experiment
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The absolute uncertainty ∆Lunc were all rounded to one significant digit, and mean changes in

length L truncated to the same number of decimal places as the corresponding uncertainty. The

uncertainty of the spring constant was rounded to 2 significant figures, and corresponding spring

constant k truncated to the same number of decimal places.

Qualitative Observations

When the rubber band was placed onto the retort stand, an evident slight oscillation was observed,

but diminished over time. Furthermore, heating by convection (by the stove), took a significantly

longer period of time in comparison to the cooling process (with the fridge).

Linear Model Graph

Figure 4: Linear model graph (Temperature ◦C vs Spring Constant Nm−1)

As processed data was entered into Vernier Logger Pro (see Appendix I), and a linear regression

(best line fit) was performed, the above graph represents the results, with corresponding error bars

and min-max lines. The correlation coefficient of the center linear fit is 0.994, hence indicating a

strong linear fit between the independent and dependent variable. The trend displayed agrees with

the hypothesis that the spring constant of the rubber band increases linearly with temperature. The

vertical error bars intersect with the center line of best fit, and horizontal error bars are negligible as

it was determined to be a constant value of ± 0.01◦C. Lastly, we can see that the slope of best-fit

falls comfortably within the min and max slope lines; 0.365 ≤ 0.426 ≤ 0.510.
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Physical Interpretation

Figure 5: Further interpretation (Temperature ◦C vs Spring Constant Nm−1)

From the derived linear model in Figure 4, there are critical assumptions that deviate from the

physical norm of a rubber band. Due to extreme temperatures, the rubber band may undergo physical

deformations, representing the breaking point of a linear relationship. The above figure (Figure 5),

represents the breaking point of Polymer placed under estimated temperatures of −30 ◦C and 100 ◦C,

but ultimately representing a domain for T for some arbitrary range [L,R] in ◦C. A final aspect to

note is that as Fa and ∆L are the same parity from Equation 2, k cannot be negative. Hence it is

important to note that k rather tends to 0Nm−1 as T → −∞, rather than cross the x-axis (which is

indicated by the linear model).

Conclusion

The investigation aims to examine the relationship between temperature (◦C) and spring constant

(Nm−1) of a rubber band. It is hypothesized that the spring constant k (Nm−1) of the rubber band

will increase linearly as a result of increasing temperature T (◦C) of the rubber band.

Through experimentation and data-processing, the line of best fit showed that a linear relationship is

established between T and k, in that k increased linearly when measured against varying increments

of T . The relationship is represented by the equation: y = 0.426x + 30.6 in Figure 5, verifying the

hypothesis. The phenomenon can be explained by observing the chemical structure of Polymeric
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chains and relating it to the notion of elastic materials described by Young’s Modulus and Hooke’s

Law.

Discussing the precision of the experiment, we analyze the line of best fit, as well as the magnitude of

uncertainty present in the investigation. The line of best fit passes through 6/7 data points (within

error bars), with exception to the first iteration. The precision of data is also prevalent in the coefficient

of determination R2 value, indicating the scatter of the data around the trend-line. In Figure 4, we

can see the correlation value to be 0.994.

As the absolute uncertainty of ∆L (∆Lunc) in Table 2 is relatively constant for most increments,

varying from either ± 0.005 or ± 0.001, the percentage uncertainty rises as T increases. From the

equation to calculate propagated uncertainty we know:

∆k

k
=

∆Lunc

∆L
⇒ ∆k = k × ∆Lunc

∆L

From Equation 2, we know k = mg
∆L . Re-writing we get:

∆k =
mg∆Lunc

[∆L]
2

Hence, it is notable to state the uncertainty is k (∆k) rises based on the increase of (∆L)2, evident

as to say why the error bars in Figure 4 rise significantly as T rises in increment. The absolute

uncertainty of T (∆T ) on the other hand, was determined to be ± 0.1◦C and are not visible on the

graph (Figure 4), thus deemed negligible.

Furthermore, to determine percentage error, the investigation would require literature values, derived

from a theoretical equation. Since there is no direct equation that relates temperature T to spring

constant k (of a rubber band in particular too), percentage error calculation is deemed unattainable.

Lastly to calculate the percentage uncertainty of the gradient, the line of best-fit, min and max lines

are used:

mmin = 0.365Nm−1 ·◦ C−1,mbest = 0.426Nm−1 ·◦ C−1,mmax = 0.510Nm−1 ·◦ C−1

∆m =
(mmax−mmin

2 )

mbest
× 100 =

0.510−0.365
2

0.426
× 100 = 17%
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Evaluation

With certain control variables taken into consideration, there were a few assumptions that hindered

the validity of the procedure, and the investigation’s methodology (in particular the scope, and limit

of the experiment). It is critical to observe and take into account different sources of (systematic and

random) error to gain a better understanding of the data collected.

Hooke’s Law

Figure 6: F −∆L graph (lumencandela, n.d)

One argument is that rubber bands don’t quite fol-

low Hooke’s law beyond a certain extension. Hooke’s

law requires a linear relationship between Fa and ∆x,

according to Equation 1. The nature of the un-

derlying polymeric chains show that with relatively

small extensions (deformations), rubber demonstrates

Hookean behavior, but turns into an S-like curve when

F and ∆x are plotted.

This detail hinders the certainty in which one measures the ”elasticity” of a rubber band (a method-

ological issue), and whether spring constant (through Hooke’s Law) is an accurate method in the

investigation. One modification would be to use a smaller hook weight, in order to significantly

decrease ∆L, in which the rubber band extends to.

Sources of Error

Sources of error and its effects Significance Improvements

During the experimental procedure, the
temperature of the rubber band could not
be controlled during the process of trans-
ferring the band to the retort stand from
either the cooktop/fridge. This is the
presence of random error, as the cool-
ing/heating of certain items are propor-
tional to the difference in temperature to
the environment, demonstrated by New-
ton’s Law of Cooling.

Maintaining the tem-
perature is critical to
the integrity of the ex-
periment, as this would
lead to anomalous data
collected.

An alternative would
be to carry out the
thermal process without
detaching the rubber
band, with the use of a
hairdryer, and likewise
placing the apparatus in
a system of cold tem-
perature itself (inside a
freezer/cold room) and
assess change in length.
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Retort stand: The DIY built stand
holds its own weaknesses as the hor-
izontal beam to which the ruler and
rubber band is attached to, is prone
to stress over time, and doesn’t form
a perfect right angle with the ver-
tical beam. This would be a sys-
tematic error present in the exper-
iment, as the structural weakness
would apply to all data points.

Low significance: The
change in length be-
tween a complete right
angle would be mini-
mal, thus affecting the
results to a small ex-
tent.

Use a new stand, perhaps one
metal, which is fairly attain-
able in a school-lab setting,
and which can ensure a 90 de-
gree angle (as it is machine
manufactured). It is also im-
portant to fasten the ruler and
hook to the new retort-stand.

Ruler: From figure 3, an evident gap
between the rubber band and ruler
is present due to the enlarged weight
required to create a pulling force.
Due to this, a certain amount of es-
timation was required to produce a
length, hence a case random error.

High significance due
to the large gap,
readings may be ac-
curate/inaccurate for
certain increments, im-
pacting the significance
on data collected.

In addition to the hook at-
tached to the rubber band,
a low-mass horizontal beam
(perpendicular) can be fixed
to indicate the reading on the
ruler, as shown in the illustra-
tion in Appendix II. However
this requires careful consider-
ation, as the mass of the hori-
zontal beam should not affect
the forces on the rubber band.

Extensions and Further Investigations

This investigation explored the relationship between temperature (◦C) and spring constant (Nm−1)

of a rubber band. The overall methodology as well as the experimental procedure can be modified

and extended in ways to develop new/better understandings of the topic at hand. Firstly, the afore-

mentioned improvements for different sources of error can be addressed, so that more accurate results

can be drawn. Methodological extensions include adapting the independent variable (IV). The IV can

be extended to fit a wider range to better assess the correlation between the two variables. Factors

that affect spring constant can be altered to other options such as qualitative variables such as color,

or quantitative ones such as cross-sectional area of a rubber band.

To determine the breaking point of the rubber band, as it poses important physical meaning, an

extension to the procedure can be added. As discussed in Physical Interpretation, this symbolizes

the domain of the model. By gradually testing extreme temperatures, we can deem the limit of when

the rubber band would become permanently deformed (i.e, the rubber band may snap when placed

under the same force), as experimentation of any temperature further than the bounds would become

pointless.
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Appendices

Appendix I: Logger Pro for Data Analysis
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Appendix II: Horizontal Beam for Apparatus
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